

Global Partnership for Sustainable Construction and Resource Efficiency Universita Delgi Studi Di Padova & Meru University of Science and Technology

Availability and Sustainability of Industrial By-Products Used in Cement-Based Construction Materials

D. K. Panesar

Dept. of Civil & Mineral Engineering, University of Toronto, CANADA July 15, 2021

Nano \rightarrow Micro \rightarrow Macroscale New \rightarrow Deteriorated \rightarrow Repaired

Design Phase

Image Source: http://atozengineering.com/civil-design.html

Construction

Image Source: http://www.newfound.ca/#services

End of Life

Image Source: http://www.icdb.ca/demolition.html

Operations and Management

Image Source: https://www.fmd.uga.edu/departments/ operations-maintenance

Pedagogical Pillars of Sustainable Infrastructure

Infrastructure Report Cards

Canada 2019

Ghana 2016

USA 2017

UK 2014

South Africa 2017

Zambia 2017

Infrastructure Categories

	Canada 2019	Ghana 2016	South Africa 2017	UK 2014	USA 2017	Zambia 2017
Ground Transportation	Road Bridges Public transit	Roads Bridges	Roads Rail	Local Transport Strategic Transport	Roads Bridges Transit Rail	Roads Bridges Rail
Water Infrastructure			Commercial ports		Ports Levees Dams	Dams
Aviation system			Airport		Aviation	Airport
Water system	Stormwater Wastewater Drinking Water	Drinking water	Water resources Water supply	Water Flood Management	Drinking water Inland waterways Wastewater	Drinking water Wastewater
Waste system				Waste	Solid waste Hazardous Waste	Solid waste Hazardous Waste
Public infrastructures	Sports & Recreation Facilities Buildings		Sanitation Education Health care		Schools Parks & Recreation	Health Education Agriculture Communication/IT
Energy		Electric Power	Electricity	Energy	Energy	Electricity Fuel

Summary of Infrastructure Report Cards (Anonymous)

Country	Road	Road Bridge		Water
	D	D		D
	B to E		A to D-	C+ to D-
	D-		В	C+
	D	C+	В	D

8

CO₂ Emission Reduction Targets Compared to Reference Year

Roadmap	Reference Year	Target Year	Low Target Reduction	High Target Reduction
Brazil (2019)	2014	2050	-10%*	-
California (2019)	2015	2040	18%	68%
China (2021)	2018	2060	29%	100%
Europe (2018)	1990	2050	-	100%**
Germany (2020)	2019	2050	36%	100%
India (2018)	2010	2050	23%	45%
UK (2020)	2018	2050	39%	156%
USA (2021)	2018	2060	37%	100%

*Brazil expects to expand concrete production by 67%

Clinker to Cement Ratios

Roadmap	Reference Year	Reference Ratio	Target Year	Target Ratio
Brazil (2019)	2014	0.67	2050	0.52
California (2019)	2015	0.9	2040	0.7
China (2021)	2017	0.79	2060	0.6
Europe (2018)	2017	0.77	2050	0.65
Germany (2020)	2019	0.71	2050	0.53
India (2018)	2017	0.71	2050	0.6
UK (2011)	2011	0.87	2050	0.7
UK (2020)	-	-	2050	-
USA (2021)	2017	0.90	2060	0.6
World (2009)	2006	0.78	2050	0.71
World (2018)	2014	0.65	2050	0.6

Some Traditional Supplementary Cementing Materials (SCMs)

- Fly ash (FA): by-product of coal combustion
- Granulated blast furnace slag (Slag): by-product of steel production
- Silica fume (SF): by-product from elemental silicon production
- Metakaolin (MK): produced from the calcination of kaolinite clay

Example: Benefits of SCMs

Coal Consumption (1995- 2020) (Affects Fly Ash Availability)

- ≻China
- ≻India
- ≻US
- ≻Japan
- South Africa
- South Korea
- ≻Indonesia
- ≻Germany
- ≻Vietnam
- >Poland

≻Australia

- United Kingdom
- ≻Russia
- ≻USSR
- ≻Other

Global Increase with some Local Decreases

Crude Steel Production (2000-2019) (Affects GGBFS Availability)

Global Increase with Local Decreases or Local ~Contant

Effective Use of Industrial By-Products and Waste

Support and Collaboration:

- IC-IMPACTS
- IIT Rookee, India
- University of Toronto, Canada

Objectives:

Use of fly ash (FA) is limited by local availability. Evaluate the interplay between material properties, service life, economic and environmental viability.

Approach:

Quantify the Trade-Offs: Engineering Properties and Economic and Environmental Impacts due to Material Use and Transportation

Fly Ash as Cement Replacement

ASTM C 618: The finely divided residue that results from the combustion of ground or powdered coal and that is transported by flue gases

CONCRETE BENEFITS

- workability
- long term strength
- permeability
- heat of hydration
- durability resistance
- drying shrinkage
- industrial by-product to replace cement

CHALLENGES UTILIZATION

- 1. Material Variability
- 2. Specifications
- 3. Regional availability
- 4. Transportation impacts

Fly Ash **Generation and Utilization INDIA**

CANADA

- **2014**, the last Ontario coal plant was closed
- By 2020, 85% of the utility electricity is generated from non-**GHG-emitting** resources

- Increase in thermal power stations
- 138 (2012- 2013) - 145 (2014-2015)
- Increase in fly ash generation
- 164.54 MT (2012- 2013)
- 184.14 MT (2014-2015)

Fly Ash Sources

Fly Ash ID	Thermal Power Station	Community	
Ban.1-T	Guru Nanak	Banga	
Ban.2-T	Guru Gobind	Banga	
Roo.1-T	Badarpur	Roorkee	
Roo.2-T	Chhotu Ram	Roorkee	
Nag.1-T	Khaberkheda	Nagpur	
Nag.2-R	Dahanu		
i tagin i t	Dananu	Nagpur	
Nag.3-R	Mundra	Nagpur	
Nag.3-R Alb.1-R	Mundra Sundance	Nagpur Nagpur Alberta	
Nag.3-R Alb.1-R Alb.2-R	Mundra Sundance Genesee	Nagpur Nagpur Alberta Alberta	

Indicator of Economic and Environmental Viability for Functionally Equivalent Material

Break-even distance: The maximum distance that fly ash can be transported without increasing the LCC or LCA result of the concrete mix above the LCC or LCA of the 100GU çoncrete Panesar, Kanraj, Abualrous, CCC (2019)

CHEMICAL LIMITS	CSA A3001-13	ASTM C 618-15	IS 3812 (Part1)
	Type F	Class F	Grade I
Total (SiO ₂) + (Al2O ₃) + (Fe ₂ O ₃)		70 min	70 min
CaO	15 max		
PHYSICAL LIMITS	Type F	Class F	Grade I
Fineness - Specific surface by air permeability, m²/kg (Blaine)	-	-	320 min
Fineness Residue @ 45 microns, %	34 max	34 max	34 max †
Water requirement of control,%	-	105% max	-
Strength Activity Index, 7 days, %	-	75 min	-
Strength Activity Index, 28 days, %	75 min†	75 min	80 min [‡]

† Optional requirement IS 3812 (Part 1) : 2013

Pozzolanic activity index requirement for mortar mixture on absolute volume
 ²² design basis

 The chemical compositions of all studied fly ashes meet the requirements of standard specifications IS 3812-1, CSA 3001-13, and ASTM C618-15

Fly Ash Characterization Physical Analysis

Blaine Fineness vs %Residue on 45µ

% Residue on 45 microns

Fineness results:

- residue on 45-um sieve (max34%) was 5% -34% reference fly ashes and 6% - 64% for target fly ashes
- Blaine fineness (min.320) was 328 -349
 m2/kg between reference fly ashes and 141 -
- 24 258 m²/kg in target fly ashes

Strength Activity Index vs Water Requirement

SAI results:

Where water requirement was above 105%, SAI was below ASTM and CSA minimum limits (75 SAI) at the age of 28 days and IS (80 SAI)

Compressive Strength (28 and 90 day)

Within the same source: higher fly ash contents have relatively lower strengths at all ages

All 28 day f'c>25MPa All 90 day f'c>40MPa

Rapid Chloride Permeability (28 and 90 day)

Indicator of Durability

- Indian FA- 28 days-Moderate Classification
- Canadian FA at 28 days-Low-Very low
- At 90 days, all FA mixes Low to Very Low

Indicator of Economic and Environmental Viability for Functionally Equivalent Material

Break-even distance: The maximum distance that fly ash can be transported without increasing the LCC or LCA result of the concrete mix above the LCC or LCA of the 100GU

Study Variables

- Cement replacement by FA (25%, 35%, 50%)
- Distance of transportation: 0 1000 km
- Time to first repair (TFR) on break-even distance
- Moderate, very severe exposure conditions

Concrete		Concrete Mix Designs				
Constituents	10001	2554	3550	5054		
(kg/m ³)	10000	231 A	551 A	JULA		
Source		Abualrous (2017)				
Water	160	160	160	160		
Cement	400	300	260	200		
Fly ash (FA)	0	100	140	200		
C. Agg	1100	1100	1100	1100		
F. Agg	765	720	710	680		

Life Cycle Cost Analysis

PVLCC = IC + PVOMR + PVD

Sum of annualized costs:

PVLCC = present value of total life-cycle cost

IC = initial construction costs

PVOMR = present value of operation, maintenance and repair

PVD = present value of disposal

$$PVLCC = \sum_{t=0}^{T} \frac{C_t}{\left(1+d\right)^t}$$

Convert future cashflow (F) into equivalent present worth

 C_t = sum of all costs

t= incurred time

d = real discount rate

Repair, Reconstruction Schedule

Life Cycle Assessment ISO 14040

- I. Goal and Scope Definition
- II. Life Cycle Inventory
- III. Life Cycle Impact Assessment
- IV. Interpretation

LCA: System Boundary

ARBOR

33

Panesar, Kanraj, Abualrous, CCC (2019)

Model: Functional Unit

Functional Unit: Volume of Concrete over 100 years

 Represents the amount of concrete (including repair concrete) needed to maintain the structure in service for 100 years

Structural Element

 square reinforced concrete column 500 mm x 500 mm and a length of 4m with a reinforcement cover depth of 50 mm (in Toronto)

Calculate 100 year volume of concrete:

- degradation mechanism assumed to be chloride induced reinforcement corrosion only
- Concrete's time to first repair (TFR) (estimated by Life 365)
- Specified repair schedule

LCA compared to LCCA

(Scenario: Moderate Chloride Exposure)

- Increase in percent fly ash: lower GWP and cost
- Transport mode: Rail transport has lower GWP and cost than truck
- Increase in transportation distance:

- more notable effect on cost than GWP

Influence of TFR on Break-Even Distance

- functional unit: volume of concrete (100 years)
- Higher fly ash as cement replacement \rightarrow more fly ash to be transported for 1 m³ of concrete
- Higher TFR \rightarrow Lower concrete volume (100 years)
- Non-linear correlation between total volume of fly ash to be transported over 100 years and the percentage of fly ash as cement replacement

Droporty	Concrete Mix Designs			
Горецу	100GU	25FA	35FA	50FA
TFR (years)	11.6	17.6	23.6	45.6
Volume (100 years (m ³)	4.82	3.51	3.46	2.23
Fly ash quantity (kg)	0	351	484	446
27				

Final Remarks: Global Sustainable Construction

Urgency: Responsible Resource Allocation Life Cycle Design and Life Cycle Thinking

Engineering, Economics and Environment

Acknowledgements

- Holcim Canada
- IC- IMPACTS- Centre of Excellence
- Ministry of Transportation Ontario
- Ministry of Economic Development of Innovation
- National Science and Engineering Research Council of Canada
- Omya Canada Inc.
- Ashtech (India) Private Limited
- Lehigh Cement Canada
- Lafarge North America

Ontario

MINISTRY OF TRANSPORTATION

IC-IMPACTS

